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Section 1

FLIGHT SUMMARY

Saturn IB SA-208 ( Skylab-4) was launched at 9:01 am, Eastern Standard Time ( EST)
November 16, 1973 from Kennedy Space Center, Complex 39, Pad B. The launch ve-
hicle successfully placed the manned spacecraft in the planned earth orbit. All S-IB-8
stage systems operated satisfactorily.

The S-IB stage objective, to boost upper stages and spacecraft through a predetermined
trajectory to place them at the proper altitude and attitude with the proper velocity at
S-IVB stage ignition, was successfully accomplished. The S-IB stage provided contin-
uous thrust for 137.82 seconds until inboard engine cutoff (IECO). The four outboard
engines cut off 3.47 seconds after the inboard engines. The S-IB stage separated from
the S-IVB/IU/CSM at 142.9 seconds.

S-IB stage participation supported launch countdown which started November 13, 1973
and concluded November 16, 1973 with a successful launch. The launch had been re-
scheduled from a November 10, 1973 date to replace all eight fins on the S-IB stage
after post-CDDT inspections revealed cracks in the fin attachment fittings. During the
LOX replenishing sequence, LOX was reported emanating occasionally from the vent
valves; however, all S-IB stage systems operated satisfactorily during countdown.

S-IB stage mass characteristics historymand predicted prelaunch data are presented for
total vehicle evaluation. S-IB stage postflight analysis was not performed.

The propulsion system of the S-IB stage performed satisfactorily throughout flight.
The stage longitudinal thrust and total propellant flowrate were 0.13 and 0.12 percent
less than predicted, respectively. Stage mixture ratio was 0.08 percent higher than

predicted. Stage specific impulse was within 0.02 percent of the prediction.

Operation of the S-1B control pressure system was satisfactory throughout prelaunch,
flight and postflight intervals.

The S-IB stage flight control subsystem performed well within design capability.

Structural analysis of the S-IB stage indicates that all structural components performed
satisfactorily. There was no compromise of structural integrity.

1-1



The electrical system of the S-IB stage operated satisfactorily during the flight.
Battery performance, including voltages and currents, was within predicted tolerances.

Pressure and thermal measurements made in the S-IB stage base region have been
compared with preflight predictions and show agreement within the design levels. The
thermal radiation environment on the flame shield was similar to that experienced on
SA-207, being more severe than expected {rom 13 to 55 seconds,

The Environmental Control System ( ECS) maintained the S-IB stage engine compart-
ment and instrument compartment at the desired temperature during prelaunch activities.,

The measurement evaluation on the S-IB stage revealed that 100.00 percent of the 265
measurements active for flight performed satisfactorily. Performance of the telemetry

and RF systems was satisfactory.

Evaluation of the S-IB stage data revealed that no failures or anomalies were detected.

1-2
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Séétioh 2
INTRODUCTION

2.1 PURPOSE

This report provides the National Aeronautics and Space Administration (NASA),
Marshall Space Flight Center ( MSFC), with the Saturn S-IB stage evaluation results
of the SA-208 flight ( Skylab-4 Mission). The basic objective of flight evaluation is

to acquire, reduce, analyze, evaluate and report on flight data to the extent required
to assure future mission success and vehicle reliability. To accomplish this objective,
actual flight problems are identified, their causes determined, and recommendations
made for appropriate corrective action.

2.2 SCOPE

This report contains the performancé ‘evaluation of the S-IB-8 stage system. Evalua-
tion was performed by comparing actual flight events and performance with the pre-
dicted characteristics and data from previous flights.
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Section 3
MISSION OBJECTIVES ACCOMPLISHMENT
3.1 LAUNCH VEHICLE OBJECTIVES

The SA-208 launch vehicle objective, to launch and insert a manned CSM into earth
orbit, was successfully accomplished. Skylab-4 was targeted for a 81 x 121 n. mi.
orbit during final launch countdown. ‘The manned CSM was placed into a 80.95 x
121.19 n. mi. earth orbit from which the rendezvous with the Orbital Work Shop ( OWS)
was begun,

3.2 S-IB STAGE OBJECTIVES

The S-IB-8 stage objective, to boost upper stages and spacecraft through a predeter-
mined trajectory to place them at the proper altitude and attitude with the proper
velocity at S-IVB stage ignition, was successfully accomplished. The S-IB stage
system performed satisfactorily throughout flight, The first stage provided continuous
thrust for 137.82 seconds until inboard engine cutoff. The four outboard engines cut
off 3.47 seconds after the inboard engines. The S-IB stage separated from the S-IVB/

IU/CSM at 142.9 seconds.
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Section 4
EVENT TIMES
4.1 SUMMARY OF EVENTS

Range zero occurred at 09:01:23 Eastern Standard Time ( EST) (14:01:23 Universal
Time [UT] ) November 16, 1973. Range time is the elapsed time from range zero,
which by definition, is the nearest whole second prior to liftoff signal, and unless
otherwise noted, is the time used throughout this report. Time from base time is the
elapsed time from the start of the indicated time base, Time base T started with the
IU umbilical disconnect sensed by LVDC; time base Ty started with actuation of the
S-IB propellant level sensors; and time base T4 started with S-IB stage outboard
engine cutoff.

A summary of significant event times for the SA-208 S-IB stage is given in table 4-1.



Table 4-1.

Significant Event Times Summary

RANGE TIME

TIME FROM BASE

ITEM| EVENT DESCRIPTION |ACTUAL ACT-PRED| ACTUAL |ACT-PRED
' (SEC) (SEC) (SEC) (SEC)
1, [ S-IB Time for Ignition
Command -3. 06 - - -
2. |]Ignition Command -3.05 -0.03 Tq-3.52 -0.02
3. | S-IB Start Signal
Eng 5and 7 -2, 96 -0, 04 T1-3.43 -0.03
4, | S-IB Start Signal
Eng 6 and 8 -2. 86 -0,04 T1-3.33 -0,03
5. ] S-IB Start Signal
Eng 2 and 4 -2,76 -0. 04 T1-3.23 -0.03
6. | S-IB Start Signal
Eng 1 and 3 * -2, 66 -0, 04 T1-3.13 -0.03
7. [ IU Umbilical Disconnect 0.39 - - -
8. | Start T9** 0. 47 - T;+0 -
9. | Single Engine Cutoff ’
Enable 3. 44 -0.04 Tq1+2, 97 -0,03
10, ] Multiple Engine Cutoff
Enable No, 1 10, 44 -0, 04 T1+9. 97 -0, 03
11, { Multiple Engine Cutoff
Enable No, 2 10, 54 -0.04 T1+10. 07 -0, 03
12, } TM Cal On 20, 44 -0, 04 T1+19. 97 -0.03
13. | TM Cal Off 25, 43 -0, 04 T;+24.96 -0,04
14. | TM Cal On 120, 24 -0, 04 T,+119.77 -0, 03
15, } TM Cal Oft 125, 24 -0, 04 T1+124.77 -0.03
16, [ Propellant Level
Sensors Enable 129. 94 -0, 04 Ty1+129. 47 -0.03
17. ] Propellant Level
Sensors Actuation ** 134. 84 -0.14 T1+134, 37 -0,13
18, | Start Ty 134. 84 -0, 14 To+0 -
19, | Inboard Engine Cutotf
(ECO) ] 137. 82 -0.16 Ty+2, 98 -0.02
20. | LOX Depletion Cutoft
Enable 139,30 -0.18 Tg+4. 46 -0,04
21. | Fuel Depletion Cutoff
Enable 139. 80 -0.18 Tg+4. 96 -0. 04
22, 1 S-IB Outboard Engine
Cutott (OECO) 141,29 0,31 Ty+6. 45 +0, 45
23. | Start of Ty 141,29 +0,31 T340 -
24, | S-1B Switch Selector
Outboard Eng Cutoft
(OECO) Command 141, 37 +0, 29 Tg+0.08 -0.02
25, | S-IB/S-IVB Separation
Signal On | 142. 55 +0, 27 Tg+1. 26 -0.04
* -
4-2
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Section 5
LAUNCH OPERATIONS

5.1 SUMMARY
The S-IB stage systems performed satisfactorily during countdown.

A chronological summary of prelaunch milestones for the S-IB stage is contained in
table 5-1.

5.2 COUNTDOWN EVENTS

S-IB stage participation supported launch countdown which started November 13, 1973
and concluded November 16, 1973 with a successful launch. The launch had been re-
scheduled from a November 10, 1973 date to replace all eight fins on the S-IB stage
after post-CDDT inspections revealed cracks in the fin attachment fittings. During
the LOX replenishing sequence, LOX was reported emanating occasionally from the
vent valves; however, all S-IB stage systems operated satisfactorily during countdown.

5.3 S-IB PROPELLANT LOADING

The propellant loading criteria for the S-IB-8 stage, presented in reference C,
HSM-R19-73, “Saturn IB Vehicle Propellant Loading for Vehicle AS-208, dated
August 24, 1973, were based on environmental conditions expected during Novem-
ber, The propellant loading table provided a LOX weight and tanking differential
pressure and a nominal LOX tank ullage volume of 1, 5 percent. The loading table
contained fuel tanking weights and differential pressures for fuel densities from
49,735 1b/ft3 at 90, 0°F to 51,211 Ib/ft3 at 30, 0°F,

The propellant discrete level instrumentation for this stage consisted of 3 probes in
each of tanks OC, 01, 03, F1 and F3. The propellant levels in the other tanks were

approximated by using data from the instrumented tanks.

The S-IB stage propellant tanking weights are shown in table 5-2. The reconstructed
load is considered the best estimate of the propellants onboard at stage ignition.

5.3.1 RP-1 Loading

Fuel was initially placed onboard the S-IB stage October 23, 1973. During a normal
gravity drain to the 600-inch level, the fuel ullage was subjected to a pressure 2.7 psi

5-1



Table 5-1, S-IB-8 Prelaunch Milestones

Date Activity or Event
15 June 1973 S-IB Stage Shipped from Michoud
20 June 1973 S-IB Stage Arrived at KSC
31 July 1973 S-IB Stage Erection on Mobile Launcher

3 August 1973
4 August 1973
14 August 1973
28 August 1973

4 September 1973

5 September 1973
11 October 1973
23 October 1973
23 October 1973
25 October 1973

1 November 1973
2 November 1973
6 November 1973
7 November 1973
12 November 1973
14 November 1973
14 November 1973
16 November 1973

LV Electrical Systems Test
LV Electrical Systems Test Complete
LV Moved to Pad B

Crack Discovered in Channel, Upper Outmgger
Assembly, Fin Position 4

Repair of Crack in Channel, Upper Outrigger
Assembly, Fin Position 4

Flight Readiness Test (FRT)
Flight Readiness Test (FRT) Repeat Complete
RP-1 Loaded

Fuel Tanks Inversion

Fuel Tanks Reformed

CDDT (Wet) Began ..
CDDT (Wet) Complete

Fin Cracks Discovered
RP-1 Drain '

Fin Replacement Complete
RP-1 Reloaded

Launch Countdown Began

SL-4 Launch
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below ambient, This resulted in the partial reversal of the upper bulkheads of tanks
F3 and F4, The upper bulkheads were returned to a flight-worthy configuration by
applying a positive pressure to the fuel ullage, On November 7, 1973, the fuel was
drained from the S-IB stage to reduce the load on the fins to allow their removal and
replacement,

Fuel was again placed onboard the S-IB stage on November 14, 1973, und remained
onboard until launch. A final level adjust drain sequence was accomplished just prior
to launch. The desired fuel weight, obtained from the loading table, was 280, 568
pounds. The PTCS number set into the computer for final level adjust was 9387. When
the fuel level was raised to the overfill sensor level 8-1/2 hours prior to launch, the

PTCS mass readout indicated no error in the fuel height; therefore, no error correction

was made to the final PTCS number.

The fuel temperature was monitored during the launch countdown and at T-60 minutes,
a final fuel temperature of 57, 0°F was projected to ignition; fin %l fyel density was ob-
tained using the temperature projected to ignition, Actual fuel at ignition was
57.0°F. Figure 5-1 shows the temperature-density relationship of the fuel used for
constructing the propellant loading tables. The fuel sampling plan is discussed in
paragraph 5.3,1.1,

The fuel temperature chilldown from LOX loading to launch was 15.4°F; predicted
chilldown was 8.4°F. This difference is partially attributable to the LOX being loaded
8 hours prior to launch rather than the 7 hours used for criteria purposes which sub-
jected the fuel to an additional hour of chilldown time. The remainder of the difference
is attributed to the 09:01 EST launch time; therefore, the major portion of the fuel
chilldown time occurred during the night hours in which the chilldown rate was greater
than predicted,

Individual tank and average fuel temperatures, from LOX loading through launch,
shown in figure 5-2, were obtained from computer program BEO3, the Propellant
Monitor Program.

5.3.1.1 TFuel ( RP-1) Sampling Plan

The consignment of 255, 000 gallons of RP-1 for Skylab Missions SL-2, SL-3 and

SL-4 was stored at LC-39B storage facility from February 1972. Samples of fuel were
collected in accordance with a specified sampling plan during March 1972 through
February 1973 and subjected to analysis. An additional sample was collected on
August 31, 1973, prior to SL-4 CDDT. Sample dates and representative data are
given in table 5-3. Data requlred for S-IB-8 flight evaluatlon fuel desnity as a
function of temperature, were determined from the initial fuel sample taken March 2,
1972. The percent errors ( lb/ft3) at flight temperature are -0.01 percent, March
1972 equation versus August 1973 equation; and +0.002 percent, March 1972 equation
versus average equation.
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Figure 5-2. S-IB-8 Fuel Chilldown After Lox Loading
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5.3.2 LOX Loading

The reconstructed average LOX density at ignition, based on the average LOX pump
inlet temperature throughout flight, was 70.600 1bm/ft3. The LOX pump inlet temp-
erature monitored during the flight indicated that the temperature of the LOX at ignition
was 0.17°F colder than predicted. The LOX pump inlet temperature, determined from
the average of measurements XC0054-1 through XC0054-8, is shown in figure 5-3.

The PTCS number set into the computer to tank the required load was 9900,

At 07 :14Z, LOX slow fill was completed and the LOX replenish sequence commenced
with 99 percent of the flight mass on board. By 08:00Z,L.OX was reported emanating
from the outboard LOX tank vents. The motion picture film from the east side camera,
facing west, offered the best view of LOX eruptions with coverage beginning at 05:01:257
to 11:34:48Z. This coverage included about 4 hours and 20 minutes of LOX replenish
operations, This film was reviewed and 119 eruptions were counted from tank O4.
Most of these eruptions were very small with 20 eruptions considered medium to large.
Because of the direction of the wind ( southwesterly) and camera view, the eruptions
from tank O4 were clearly discernible as to their origin. Additional discharges were
noted from other outboard tanks viewed from other camera positions, but were fewer
in number and of smaller magnitude than O4 discharges. Reconstructed flight perform-
ance, as it pertains to the problem, showed nothing unusual. Actual LOX load was within
400 pounds of predicted, and LOX pump inlet temperature averaged, throughout flight,
0.17°F colder than predicted. Time required to prepressurize the ullage was 55 seconds,
approximately the same as during the CDDT, which indicated normal ullage volume.

" The wind and humidity during the countdown were near normal. o

Figure 5-4 depicts the relative heights of liquid in the center tank and a windward outer
is approximately 2.7 inches above that of the center tank and 23.4 inches below the
bottom of the vent duct, A wind increase to 34 knots ( maximum expected) would cause
the outer tank level to increase approximately 4 inches while the center tank level would
be unchanged.

Instrumentation to detect or investigate the phenomenon is inadequate because its in-
tended use was for flight evaluation, However, the eight LOX pump inlet temperatures
( one/engine) were reviewed together with the Engine No. 1 LOX pump inlet pressure
for the 8-hour period prior to launch. This period covered start of LOX loading until
liftoff, Additionally, center LOX tank ullage pressure was scrutinized for any unusual
fluctuations which could be related to the discharges seen on the film. None were noted
during the 8-hour period. The overfill sensor, located 21 inches below the vent duct,
did not indicate liquid presence during LOX loading.

Review of films taken during SA-206 and SA-207 countdowns revealed similar occur-
rences. Several small eruptions were also observed in reviewing the films of the
SA-206, SA-207 and SA-208 Countdown Demonstration Tests (CDDT). While the
cause is not known, this LOX ejection had no apparent effect on flight performance.
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Section 6
MASS CHARACTERISTICS
6.1 SUMMARY '

The S-IB stage mass characteristics history and predicted prelaunch data were pro-
vided for the vehicle evaluation. A postflight stage analysis was not performed.

6.2 PREDICTED MASS CHARACTERISTICS

The final predicted mass characterlsf s for the S-IB stage are presented in TN-WG-
73-1-208, Revision A, dated August' - 1973. Dry stage mass characteristics reflect
the status as stated in TN-P&VE-73-7 73 “dated August 20, 1973. These data are based
on the measured weight and longltudmal center of gravity taken al the Michoud Assembly
Facility, April 28, 1967, and include all changes and modifications applied to the

stage from the time of weighing until August 20, 1973. Predicted stage mass properties
for significant event times are compiled in table 6-1.

Propellant loading, utilization and event times were obtained from TR-PRVE-73-153,
dated June 20, 1973 (reference B). These propellant data are the final predicted
loading and consumption for the S—IB'st'age under normal conditions. A propellant
weight breakdown for selected flight conditions is given in table 6-2.
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. PROPULSION

7.1 SUMMARY

The S-IB stage propulsion system performance was satisfactory. Stage longitudinal
thrust averaged 0. 13 percent lower than predicted. Stage 1.0X, fuel and total flow-
rates averaged 0.10 percent, 0,18 percent, and 0.12 percent lower than predicted,
respectively. Stage mixture ratio averaged 0. 08 percent higher than predicted. Stage
specific impulse was within 0. 02 percent of predicted. Inboard engine cutoff (IECO)
occurred 0. 16 seconds earlier than predicted. Outboard engine cutoff (OECO) was
initiated 3. 47 seconds after IECO by engine number 1 Thrust OK Pressure Switch
deactuation,

7.2 S-IB IGNITION TRANSIENT PERFORMANCE

All eight H-1 engines ignited satisfactorily. The automatic ignition sequence, which
schedules the engines to start in pairs with a 100-millisecond delay between each
pair, began with the time for ignition command at -3. 050 seconds range time. The
start sequence that occurred was close to optimum. The maximum spread in the
start time (F, prime times) of engines within a pair was 25 milliseconds and was
between engines 2 and 4 (third pair of engines). The smallest interval in the planned
100-millisecond sequence between pairs was 75 milliseconds which occurred between
the third pair’ s later engine and the fourth pair’s earlier engine (specifically between
engines 2 and 3). )

Table 7-1 compares predicted and actual start event times. The individual engine
thrust buildup curves are shown in figure 7-1. The thrust values shown are the
engine chamber thrusts and do not account for cant angles or turbine exhaust thrust.
Figure 7-2 shows the total thrust buildup of the stage.

7.3 S-IB MAINSTAGE PERFORMANCE

7.3.1 Stage Performance

S-IB mainstage flight performance was satisfactory. Stage longitudinal thrust,

figure 7-3, averaged 2347 pounds (0. 13 percent) lower than predicted. The stage
specific impulse, figure 7-4, during flig'ht was within 0. 04 second of predicted.

Stage mixture ratio, figure 7-5, averaged 0. 0019 (0. 08 percent) higher than predicted.
Stage LOX and fuel flowrate, figures 7-6 and 7-7, averaged 4.3 lbm /sec (0.10 percent)
and 3.4 Ibm/sec (0.18 percent) lower than predicted, respectively. Total flowrate,
figure 7-8, averaged 7.7 Ibm/sec (0,12 percent) lower than predicted. These average
deviations were taken between first motion and IECO.
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The performance parameters contributing to the small deviations from predicted
performance are given in table 7-2. The fuel temperature was 5.4°F lower than pre-
dicted which normally would have significantly decreased thrust and total flowrates;
however, the effects of the more dense fuel were almost entirely compensated for hy
a slightly higher LOX tank pressure and a lower LOX temperature than predicted.

The early IECO and late OECO were primarily the result of a greater than predicted
level difference between the O-2 tank which signalled level sensor actuation (I SA)
and the other four tanks, particularly the center tank. The lower than predicted level
in the O-2 tank caused less I OX to be consumed by the inboard engines before TECO
and more T.OX was available for the outboard engines before LOX depletion occurred.
Another contributor to the late OECO was the 4-engine LOX starvation. The pre-
diction incorporates a 2-engine LOX starvation OECO cutoff to provide conservatism
for the other types of OECO that can occur.

The predicted performance for S-IB-6, 7 and 8 was determined before any stages
with 205K thrust engines had flown. Since the flight of S-IB-6, it was expected that
the fuel and 1.OX tank pressures would be higher, the fuel temperature lower, and
the LOX level in 02 lower than predicted for S-IB-7 and S-IB-8. As the combined
effects of these small deviations do not significantly affect stage performance,
prediction updates were not considered necessary.

7.3.2 Individual Engine Performance

The performance of each engine was satisfactory. Individual engine propulsion per-
formance data in table 7-3 give sea level values, which are al rated operating con-
ditions for selected parameters obtained from Rocketdyne acceptance test data,
flight prediction data and flight data at a slice time of 30 seconds.

The predicted sea level values for the S-IB-8 engines were calculated in a similar
manner to the sea level values for the S-IB-7 engine prediction data. The predicted
thrusts, turbine speeds and flowrate sea level data were derived by increasing the
Rocketdyne acceptance test data to be consistent with the trends noted during the
flights of S-IB-1 through S-IB-5 with 200K thrust engines. The 8-engine average sea
level thrust, LOX flowrate, and specific impulse were within 0.1 percent of those
predicted. The average sea level fuel flowrate and mixture ratio were within 0.25
percent of those predicted.

The average differences between flight and predicted thrust, specific impulse, and
mixture ratio from liftoff to IECO are shown for each engine in figure 7-9. Also
shown in figure 7-9 are the differences in sea level values (table 7-3) at 30 seconds
for each engine.

The individual engine flight performance was determined by reconstructing the flight
with the Mark TV computer program, a mathematical model of the Saturn first stage
propulsion system which utilizes a table of influence coefficients to determine engine
performance. The thrust levels are determined from an RPM match option of the
program which uses ground test data to calculate thrust based on turbopump speeds.
This method has been shown to provide better estimations of flijght thrust than can be
obtained with the telemetered chamber pressures.
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Figure 7-9, Thrust, Specific Impulse and Mixture Ratio Deviations
(Percent Deviation from Predicted)
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7.3.3 Stage Static Test, Engine Performance Summary

As a result of two engine replacements and required turbine reworks, the flight
configuration of the S-IB-8 propulsion system was different from the stage static test
configuration. After completion of static testing, engines H-7083, H-7081, H-7085
and H-4077 (positions 2 through 5) were removed and reworked; the first stage turbine
wheels were replaced and penalty acceptance tests performed prior to reinstallation
on the stage. During subsequent storage, the engines in positions 2 and 4 were re-
placed with engines H-7079 and H-7096, respectively. Engine replacements were
required because the LOX seal cavities were contaminated during storage.

Changes to the S-IB-8 propulsion system configuration post-static test were similar
to changes for the S-IB-7 stage, on which three engines were replaced and one turbine
reworked. ﬂ

Comparisons of S-IB-8 data, Rocketdyne acceptance, stage static test and flight, are
presented in figures 7-10 and 7-11. Data are shown separately for the stage static
test and flight propulsion system configurations.

Information that impacts evaluation of the S-IB~-8 propulsion system performance is
presented in references A through U. Major revisions of engine data (acceptance and
stage static test) were required as a result of fuel inlet temperature studies con-
ducted by Rocketdyne (reference F) and the subsequent revision of H-1 engine
influence coefficients (reference G). Data presented herein are from the following
revised sources and supersede the original stage data published in references D and E:

Test Classification Test Site Data Source
1. H-1 Engine Acceptance Rocketdyne, Neosho Reference H
2. S-IB Stage Static Test CCSD/MSFC References Iand N

Data for the long duration static test (SA-41) were evaluated by application of a re-
construction technique similar to that performed for flight analysis. The results of
this analysis are presented in reference N. Propellant flowrate estimates were
evaluated using information from discrete liquid level sensors, three sensors in each
of tanks OC, 01, 03, F1 and F3. Estimates of engine specific impulse based upon
these data are included in figure 7-11.

A comparison of S-IB stage static test and flight thrust histories relative to the
Rocketdyne acceptance data is presented in figure 7-12. Flight predictions for the
stages incorporating H-1 engines rated at a sea level thrust of 205K-1b (S-IB-6, S-IB-7).
were made with a thrust multiplier of +0.59 percent (1. 0059)*. Bias magnitudes in
flight thrust for these stages are not comparable to the uniform bias observed for 5
stages incorporating 200K-1b rated H-1 engines. As shown in figure 7-12, the thrust
bias observed for stage static test is representative of the flight bias.

*Two engines on S-TB-6 were predicted with no bias.
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7.3.4 LOX Seal Drainline Temperature Analysis

LOX seal drainline temperatures were measured with a 3-element thermocouple
installed in the primary line of each engine. The secondary drainlines were not
instrumented. Temperature measurements from the 3-element thermocouples are
designated C540-1 through -8, C541-1 through -8 and C542-1 through -8, Repre-
sentative data for each engine position are shown as a function of range time in
figure 7-13. '

Drainline temperatures were monitored automatically during the prelaunch countdown.
Automatic cutoff occurs if the temperature for any engine is colder than -250°F
(-156.6°C) based on a 2 of 3 voting logic for the 3-element thermocouple. Prior to
ignition sequence, LOX drainline temperatures were in the range -141°F to -161°F
(-96°C to -107°C), where values are the average of three individual measurements
from the 3-element thermocouple. During the interval from ignition sequence until
liftoff, the largest temperature decay was observed for engine position 1 (H-7082)
with the minimum temperature -158°F (-106°C) observed approximately one second
after liftoff. Relative to the pre-ignition temperature,the decrease was 13°F (7°C).
No significance was assigned this event because any minimum temperature greater
than -250°F (-156. 6°C) is acceptable. LOX seal drainline temperature changes of
approximately 25°F magnitudes were observed for engine position 2 on S-IB-5, engine
position 5 on S-IB-6, and engine position 1 on S-IB-7.

7.4 S-IB SHUTDOWN TRANSIENT PERFORMANCE

The cutoff sequence of the S-IB-8 stage began at 134. 84 seconds (LVDC), with the
actuation of the low-level sensor in LOX tank 02. IECO was initiated 2. 98 seconds
later by the TVDC at 137. 82 seconds. Thrust decay on each inboard engine was
normal. The total IECO impulse was 251,770 lb-sec. Inboard engine total thrust

decay is shown in figure 7-14.

1.OX starvation occurred in the four outboard engines. Outboard engine total thrust
decay is shown in figure 7-15. The total OECO impulse was 181,550 Ib-sec. Each
engine has three thrust OK pressure switches, and as engine performance decays
during LOX starvation, the first outboard engine to lose thrust OK signal from two-
out-of-three switches, will simultaneously cut off all outboard engines. Engine 1
initiated OECO which occurred at 141. 29 seconds range time. Table 7-4 shows

the time of thrust OK signal dropout for each switch on each outboard engine as
indicated by the tabular printout from the Remote Digital Submultiplexer.

Table 7-4. Outboard Engine Thrust OK Pressure Switch Times

at OECO*
THRUST OK
PRESSURE ENGINE 1 ENGINE 2 ENGINE 3 ENGINE 4
SWITCH
TOPS 1 141. 3165 141.3998 141. 3998 141. 3998
TOPS 2 141. 3165 141. 3998 141. 3915 141. 3915
TOPS 3 141, 3498 141, 3498 141, 3498 141, 3498

*Range Time (+0, ~0.083 sec)
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7.5 S-IB STAGE PROPELIANT MANAGEMENT

Propellant usage is the ratio of propellant consumed to propellant loaded, and is an
indication of the propulsion system performance and the capability of the propellant
loading system to load the proper propellant weights. The predicted and actual
(reconstructed) percentages of loaded propellants utilized during the flight are shown
in table 7-5.

Table 7-5. Propellant Usage

PROPELLANT PREDICTED (%) ACTUAL (%)
Total 99. 20 99,13
Fuel 98. 34 98. 02 )
1 OX 99. 58 99. 62

The planned mode of OECO was by L.OX starvation. The LOX and fuel level cutoff
sensor heights and flight sequence se%:tuf;;és were determined for a 3. 00-second time
interval between cutoff sensor actuation and IECO. The planned time interval between
IECO and OECO was 3. 00-seconds. OECO was to be initiated by the deactuation of
two of the three thrust OK pressure switches on any outboard engine as a result of
LOX starvation. It was assumed that approximately 271 gallons of 1LOX in the out-
board suction lines were unusable. b

initiate OECO, 13. 00 seconds after level sensor actuation.

To prevent fuel starvation, fuel depletion cutoff sensors were located in the F2 and F4
container sumps. The center LOX tank sump orifice was 19. 0 2 0. 005 inches in dia-
meter, and a liquid level height differential of approximately 3. 0 inches between the
center and outboard 1L.OX tanks was predicted at TECO (center tank level higher).

The fuel bias for S-IB-8 was 1550 pounds. This fuel weight, included in the predicted

nominal conditions and is not expected to be used during a nominal flight.

Data used in evaluating the S-IB stage propellant usage consisted of two discrete probe
racks of three probes each in tanks OC, 01, 03, F1 and F3; cutoff level sensors in
tanks 02, O4, F2 and F4; and fuel depletion sensors in the F2 and F4 sumps.

The cutoff sequence in S-IB-8 was initiated by a signal from the cutoff level sensor in
tank O2 at 134. 84 seconds (LVDC). The IECO signal was received 2. 98 seconds later
at 137. 82 seconds. OECO was initiated 3.47 seconds after TECO at 141. 29 seconds by
engine number 1 thrust OK pressure switch deactuation. TFuel depletion probes were
not actuated prior to retrorocket ignition.

Based on discrete probe data and reconstruction analysis, liquid levels in the fuel tanks

were nearly equal and approximately 24, 7 inches above theoretical tank bottom at IECO,
This level represents a mass of 11,619 pounds of fuel onboard, At that time 11,121
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pounds of LOX remained onboard. Corresponding liquid height in the center tank was
approximately 14, 7 inches and average height in the outhoard tanks was approximately
10. 3 inches above theoretical tank bottom,

At OECO the fuel mass onboard was 6,879 pounds. The fuel height at this time was
19. 2 inches above tank bottom or 23, 3 inches above the fuel depletion sensor. This
level corresponds to 398. 4 gallons (2,692 pounds) of fuel above the fuel depletion
sensor at OECO.

Propellants remaining above the main valves after outboard engine decay were 2, 380
pounds of LOX and 5, 550 pounds of fuel. Predicted values for these quantities were
2,642 pounds of LOX and 4,628 pounds of fuel. -

Cutoffwsgnsorrs:ignal times and setting heights from theoretical tank bottom are shown
in table 7-6. Discrete probe signal times and setting heights from theoretical tank
bottom are shown in table 7-7.

Table 7-6. Cutoff Sensor ActL;a'trién, bjﬁaracteristics

PROBE HEIGHT ACTUATION
MEASUREMENT (INCHES) TIME
NO. (SECONDS)
- K15-02 27.5 134.88
K16-04 27.5 135. 05
K17-F2 31.4 136. 36
K18-F4 31.4 136. 44

Total LOX and fuel masses above the main propellant valves beginning at ignition
command are shown in figures 7-16 and 7-17. A summary of the propellants re-
maining at major event times is presented in table 7-8.

Table 7-7. S-IB-8 Propellant Level Discrete Sensor Actuation Times

FUEL TANK HEIGHT RANGE TIME, SECONDS
DIS§§ETE INCHES TANK F1 TANK' F3
1 577.0 8.21 10.60
3 498.0 26.62 28.64
15 24.0 - 137.92 138. 05
LOX TANK HEIGHT RANGE TIME, SECONDS
DISIS(?ETE INCHES TANK OC | TANK O1 { TANK O3
1 603.6 10.33 7.35 7.55
3 520.9 29.13 25. 24 25.48
15 24.9 136.41 135.44 135.45
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7.6 S-IB PRESSURIZATION SYSTEM

7.6.1 Fuel Pressurization System

During the flight of S-IB-8 no anomalies were observed in the performance of the
helium blowdown system used to pressurize the fuel tanks. With the exception of a
change in the vent valve relief pressure setting and minor changes in the vent valve
sensing lines, the pressurization system was the same as on S-IB-7 and included the
two 19. 28 ft 3 high-pressure helium spheres, lightweight tanks and fuel vent valves.
Because of the accidental damage to the upper bulkheads on fuel tanks F3 and F4 (see
sections 5.3.1 and 10. 3.1 for discussion), the vent valves’ relief pressure was
lowered from the normal 21.0/21.5 psig to 19.0/19.1 psig to maintain adequate
structural margin, In addition, expansion loops were added to the vent valve sensing
lines on the upper bulkheads to relieve the strain on the sensing system caused by the
increased bulkhead deflection, To reduce the peak pressure during tank pressuriza-
tion, a pressure switch was selected which showed the lowest actuation pressure
during pressure switch calibration tests. The switch installed on S-TB-8 actuated at
31.5 psia and deactuated at 30. 3 psia during calibration.

Helium flow into the fuel tank ullage is metered by a sonic nozzle between the high-
pressure spheres and tanks. The orifice diameter of the sonic nozzle was 0.220/
0.221 inch. The pressurization system is shown schematically in figure 7-18.

Sufficient pressure must be provided by this system to meet fuel NPSH requirements
at the end of flight and maintain structural integrity throughout flight. Both require-
ments were met. The pressures that define the operating band are 10 psig minimum
for structural integrity and the minimum vent valve relief pressure is 19. 0 psig.
Fuel ullage pressure remained within these limits, as shown in figure 7-19. The
data for figure 7-19 were generated from the absolute fuel tank ullage pressure,
measurement D2-F3, and ambient pressure as a function of altitude from NASA
TMX-53139, A Reference Atmosphere for Patrick AFB, Florida, Annual (1963
Revision), September 23, 1964. Because the fuel vent valves sense the fuel tank
forward skirt internal pressure rather than true ambient pressure, a correction was
made to the ullage gage pressure. These corrections were taken from CCSD Inter-
Company Correspondence, File Code 2780/3/10/447, SL-4 Fuel Tank Forward Skirt
Internal Pressure, W. B. Meinders to E. A. Rawls, October 30, 1973. This docu-
ment indicates that ambient pressure as sensed by the fuel vent valve can be as much
as 0.7 psi lower than true ambient thereby making the gage pressure 0.7 psi higher.
Appropriate corrections were made to the ullage gage pressure from 20 seconds to
110 seconds and are reflected in figure 7-19.

A comparison of measured absolute ullage pressure and predicted ullage pressure is
presented in figure 7-20. Measured ullage pressure compared favorably with pre-
dicted ullage pressure during the flight and at no time exceeded a difference of 1. 0
psia from the predicted value.

The Digital Events Evaluator showed that fuel vent valves 1 and 2 closed at the
beginning of the pressurization sequence and remained closed until liftoff. No vent
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valve position instrumentation is available during flight, but inspeclion of the fuel
tank ullage pressure history reveals no reason to suspect that the vents opened during
flight.

Tank pressurization began at T-159. 86 seconds. The 1527-gallon (3. 61 percent)
ullage volume was pressurized to 32. 2 psia in 2. 43 seconds. The pressurization
valves opened again at T-135. 73 seconds for a period of 0. 23 second to repres-
surize the fuel tank ullage after pressure decay due to system cooling. This is about
15 seconds earlier than in previous flights and results from the increased ullage
pressure decay rate due to fuel vent and relief valve pilot valve leakage, and from the
tighter operating band on the pressure switch.

S-1B-8 was the first stage to have noticeable pilot valve leakage because the pilot
valve assembly is normally adjusted to provide relief action at 21. 0/21. 5 psig and
poppet reseating at 19. 0 psig. The valves used on S-IB-8 differed from the normally
installed valves in that the relief setting was reduced to 19.0/19, 1 psig to accomo--
date a lowered proof pressure for the tanks. The effect of the reduction of relief
pressure was also to reduce reseat pressure to approximately 17. 0 psig. Pilot valve
leakage was then approximately 4000 scim per valve at a tank ullage pressure of

18. 0 psig, whereas there was zero leakage at 18. 0 psig for valves set to relieve

at 21.0/21.5 psig.

The Digital Events Evaluator shows that the pressurizing valves opened three times
to repressurize the fuel tanks. Two of these repressurization cycles occurred during
the engine start sequence. Fuel tank ullage pressure from T-170 seconds to liftoff

is shown in figure 7-21.

Telemetry data show helium sphere pressure to be 2903 psia at liftoff which is
slightly higher than it was on S-IB-7. The sphere pressure is shown in figure 7-22.

Because the fuel temperature and ullage pressure were different in each of the tanks,
the liquid levels were different. The maximum difference between tanks F1 and F3,

determined from recorded discrete probe times, was 10. 2 inches at T + 8. 2 seconds.
The levels converged to a difference of 0.6 inch at approximately T + 138. 0 seconds.

7.6.2 LOX Pressurization System

The LOX tank pressurization system performed satisfactorily during the S-TB-8

flight as evidenced by measurements D3-OC, K72-9, C234-9 and D119-9. A schematic

of the system is shown in figure 7-23.

Following the I OX bubbling test (OAL.B) at T-4 hours -8 minutes, the I1.OX vents were
closed on three occasions prior to prepressurization during the elevator operation as
a safety procedure against 1.OX spillage through the vents. The vents were closed

at T-4 hours -2 minutes, T-2 hours -40 minutes ,and T-55 minutes for durations of
129 seconds, 130 seconds and 150 seconds, respectively. The 1L.OX tank ullage
pressure rises during these periods were 3.0 psi, 2.9 psi and 3. 3 psi, respectively.
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A closed-position indication for all vent valves occurred hetween T-159. 797 and
T-157. 925 seconds, which resulted in the first ullage pressure rise as shown in
figure 7-24. The opening of the LOX bubbling valve at T-152. 921 seconds resulted
in a 2-psi ullage pressure increase followed by a gradual increase for the duration
of LOX bubbling as the liquid level increased until the pressurizing valve opened.

Prepressurization began with the helium pressurizing valve opening at T~ 102. 893
seconds and was accomplished in 55. 21 seconds, compared to 73. 33 seconds for
S-TB-7. The faster pressurizing rate occurred because of increasing the ground
pressurizing orifice diameter from 0.100 to 0.114 inch.

With the additional 18 seconds for ullage decay, the pressure switch cycled 6 times
prior to ignition, which is 3 more than 8-IB-7. The switch actuated at approximately
57.17 psia and deactuated at 56. 2 psia, which is within the switch limits. The bypass
orifice flow was initiated at T-2. 387 seconds, while the pressurizing valve was open
during the final cycle. The reconstructed 1.OX ullage volume prior to vent closure

of 994 gallons (1.48 percent) was the same as that on S-IB-7.

The ullage pressure during flight is compared with the predicted pressure and pre-
sented in figure 7-25. The initial pressurization level satisfied the minimum re-
quirement of 80 psia at the LOX pump inlet for engine start. The pressurization
system is designed to provide a minimum tank pressure at OECO of 50==2.5 psia.

The minimum pressure of 47. 2 psia occurred during the engine start transient and
the maximum pressure of 52.7 psia occurred at T+33 seconds. The GOX flow control
valve (GFCV) started to close at ignition, and after the normal hesitations during the
start transient, reached the fully closed position at T+20 seconds and remained
closed until T+50 seconds as shown In figure 7-26.

The GTCV moved off the minimum position at T+50 seconds, which was 22 seconds
earlier than S-IB-7. The earlier opening time is attributed to a lower ullage pres-
sure than on S-IB-7, because GFCV opened at an ullage pressure of approximately
52 psia on both flights. The GFCV continued to open gradually for the remainder of
the flight to 21 percent open at TECO, while the ullage pressure decayed to 49.5 psia.

7.7 PROPULSION SYSTEM EVENT TIMES

Event times for the S-IB-8 stage propulsion system are summarized in table 7-9.
Data sources for event time measurements are included for reference.

Flight and predicted events are presented in range time, the flight values referenced
to range zero of 14:01:23. 000 Greenwich Mean Time. Predicted event times pre-
sented in table 7-9 are derived from values presented in reference B ""Final Launch
Vehicle Propulsion System TFlight Performance Prediction for SA-208." The
referenced values were predicted relative to vehicle first motion and have been
adjusted to range time.
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Table 7-9. S-IB Stage Propulsion System Event Times
MEASUREMENT FLIGHT PREDICTED gﬁéﬁ?ﬁ?{iis
) OR EVENT RANGE TIME | RANGE TIME P‘REDICLTED
SOURCE EC E
(SEC) (SEC) (SEC)
DEE-6* Time for Ignition
Command -3. 065 - -
DEE-6 Ignition Command -3, 050 -3.030 -0.020 (~. 03)
DEE-6 Ignition Sequence No. 1
~-2,963 ~-2.930 -0,033 (-.04
(Engines 5 and 7) 2.9 2 ( )
DEE-6 Ignition Sequence No. 2 -9. 864 -2.830 -0. 034 (-. 04)
(Engines 6 and 8)
DEE-6 Ignition Sequence No, 3 2. 762 -2.730 -0.032 (-. 04)
{Engines 2 and 4)
DEE-6 Ignltfon Sequence No, 4 -2.663 -2.630 -0, 033 (-, 04)
(Engines 1 and 3)
FEWG** First Motion +0, 27 +0.27 -
FEWGH** Liftoff U Umbilical +0.47 40,47 0. 00
Disconnect at LVDC)

- Start of T2 (LVDC) 134. 84 134. 97 -0.13 (-.14)
K17-F2 Tank F2 LSA 136, 36 - -
K18-F4 Tank F4 LSA 136.44 - -
K15-02 Tank O2 LSA 134. 88 134. 97 -0.09 (-.10)
K16-04 Tank O4 LSA 135. 05 134, 97 -

K1-12 IECO 137.82 137,97 -0, 15 (~, 16)
K3-12 OECO 141. 29 140.97 +0,32 (+.31)
OECO (Back-up
Indications)
99, K CO (Eng. 1, 2,
K99, K100 OECO (Eng 2, 3, 141, 29 _ _
and 4)
K1-12 OECC 141.37 - -
K1-12 - -IVB i .
S-IB/S-1VB Separation 142.55 142, 27 +0. 28 (+.27)
Signal
K53-12 - -1v i
5 S' IB/S-1VB Separation 142. 60 _ _
Signal
K37-11 Retrorocket Ignition 142.80 142, 27 +0,33
VK§1-F2 Fuel Depletion Sensor 143. 40 _ _
(F2)
VK82-F4 Fuel Depletion Sensor 143, 39 _ _

(F4)

NOTE: Ignition command and ignition sequences 1 through 4 in the predicted column are
revised values not presented in the SA-208 flight prediction,

*DEE-6: Digital Event Evaluator

**FEWG: Flight Evaluation Working Group

() Denotes difference established by FEWG predictions with first motion predicted at

v, 28 seconds.
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The 10X level sensor located in tank O2 initiated time base 2 (Ty) at 134. 84(LVDC)
while the S-IB stage indication, measurement K15-02, was recorded at 134. 88 seconds
range time. Indicated actuation times for fuel level sensors (measurements K17-T2
and K18-F4) were 136. 36 and 136.44 seconds, respectively. Accounting for maximum
sampling rate time delay of 0.083 seconds (12sps), the earliest possible fuel sensor
actuation was 136. 28 seconds, confirming that T, initiation was caused by 1.OX liquid
level.

Inboard engine cutoff (TECO) occurred at 137. 82 seconds (measurement K1-12). LOX
starvation of the outboard engines produced cutoff (OECO) at 141. 29 seconds. Inboard
engine cutoff (IECO) was 0.16 second earlier than predicted and outboard engine
cutoff (OECO) was 0. 31 second later than predicted. Reasons for differences in pre-

The OECO sequence was as follows: Cutoff was initiated by actuation of Thrust OK
Pressure Switches (TOPS) for engine position 1. Analysis of data from the Remote
Digital Submultiplexer (RDSM) has shown that 2 of 3 switch voting logic was completed
at 141. 316 seconds. Indication of Conax valve actuation (measurement K-100) for all
outboard engines was recorded at 141. 292 seconds and the switch selector OECO
signal (K1-12) recorded at 141. 37 seconds. The RDSM data (TOPS and Conax
actuation) are limited by a 12-sps data sampling rate and a corresponding maximum
time delay of 0. 083 second. Receipt of Conax actuation signals prior to receipt of
TOPS cutoff confirmation is the direct result of scanning Conax signals ahead of TOPS
information in the data sampling procedure. Paragraph 7.3 describes shutdown
transient performance. N

It should be noted that actuation of the fuel depletion sensors occurred after retro-
rocket ignition.
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Section 8

CONTROI PRESSURE SYSTEM

8.1 SUMMARY

Operation of the S-IB-8 stage control pressure system was satisfactory throughout
the prelaunch, flight and postflight intervals. This system supplied GN, at regu-
lated pressure within specified limits to provide pressurization of the H-1 engine
turbopump gear boxes and to provide purges of the TOX and lube seal cavities and
two radiation calorimeters. This regulated supply also provided closing pressure
for actuation of the LOX and fuel prevalves at IECO and OECO.

8.2 CONTROL PRESSURE SYSTEM

The configuration of the control pressure system was the same as those for S-IB-6
and S-IB-7 as shown in figure 8-1. The pressure measured at the GNg control
sphere as a function of range time is presented in figure 8-2 (measurement number
XD 40-9). Prior to engine ignition, the sphere pressure was maintained within the
2800-3300 psia redline limits. During the ignition transient and flight intervals, the
pressure decay was within the allowable limits.

Pressure regulation was in the range of 769-787 psia, well within the operational
limits of 710-815 psia. Fluctuations in regulated pressure were observed at IECO
and OECO, being consistent with the i&ﬂésed GNg demand for prevalve closure.
Examinations of the 750-psig regulator discharge pressure measurements XD41-9
and XD42-9 showed normal operational characteristics.
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Section 9

FLIGHT CONTROL SUBSYSTEM

9.1 SUMMARY

The S-IB stage flight control subsystem performed well within design capability. The
hydraulic systems and actuator performance were satisfactory during flight and were
similar to previous flights. o

9.2 S-IB HYDRAULIC SYSTEM PERFORMANCE

The S-IB stage hydraulic system pressures were satisfactory during flight and were
similar to those of the S-IB-7 flight, At zero seconds, the system pressures ranged
from 3190 to 3250 psig. The pressurﬁcreased approximately 50 psi on each engine
durmg flight. This normal pressure dé?rease is due to the main pump temperature
increase during the flight.

Reservoir oil levels were also similar to those of the S-IB-7 flight. There was a rise
of approximately 2 percent in each level during flight, indicating approximately a

7°C rise in each hydraulic system’s average oil temperature (not reservoir oil temp~
erature).

The reservoir oil temperatures were satisfactory during flight, Temperature for
S-IB-8 at liftoff averaged 44°C as compared to an average of 51°C for the reservoir
oil temperatures of the four S~ IB-7 hydrauhc systems., The average temperature
decrease during the flight was 7°C for S-IB-8 as compared to an average decrease of
9°C for the four S-IB-7 hydraulic systems. Figure 9-1 shows recorded values of the
hydraulic oil pressure, the reservoir oil level, and the reservoir oil temperature.

9.3 S-IB ACTUATOR PERFORMANCE

All eight actuators performed smoothly duﬁng S-1B stage flight. In general, actuator
activity was similar to previous flights.

The maximum pitch gimbal angle of 1.5 degrees occurred on engine No. 1 and 3 at
T+58 seconds, which is approximately 19.0 percent of the maximum possible deflection.
Engine No. 2 actuator represents the largest yaw gimbal angle of 1.6 degrees at T+58
seconds, or approximately 20 percent of the maximum possible deflection.
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Figure 9-1. S-IB Stage Hydraulic System Characterics
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The gimbal rates observed are comparable to those experienced during previous flights.
The greatest gimbal rate observed during flight was 1.7 deg/sec on engine No. 1 yaw
actuator at T+58 seconds. This rate is approximately 5 percent of the actuator’s max-
imum rate. Figure 9-2 is a comparison of gimbal angles for the S-IB flights of S-1B-1
through S-1B-8.

The differential currents to the servo valves ranged from 0 to 14 percent of rated
current during S-IB stage flight., The largest differential current observed was on the
engine No. 1 yaw actuator and was 1,7 ma at T+58 seconds. The maximum value of
each performance parameter for each actuator during liftoff, Max q, outboard engine
cutoff (OECO), and for S-IB stage ﬂlght are presented in table 9-1. It should be noted
that, because of the physical mounting of the servo-actuators, the polarity of their
position in degrees may not agree with the polarity of the average gimbal and angle.
For example, a positive beta pitch command will produce a negative degree reading in
the telemetry data for engines No. 1 and 4 and a positive readout for engines No. 2 and
3. In the yaw plane, engines No. 1 and 2 have a negative polarity for a positive beta
yaw command. Figures 9-3 through 9-6 show actuator position as a function of range
time. Figure 9-7 depicts the average actuator position of the four pitch actuators and

the four yaw actuators during the flight of S-IB-8,.

[¥5)
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Figure 9-2 S-1B Stage Envelope Maximum Gimble Angle
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Table 9-1. S-IB Actuator Performance Data
Engine 1
Parameter Axis Liftoff Max g OECO Flight
Gimbal Position Pitch 0.3 1.5 0.3 1.5@58
(deg) Yaw 0.2 1.3 0.1 1.3@58
Gimbal Rate Pitch 0.2 1.1 0.1 1.1@58
deg/sec) Yaw 0.1 1.7 <-0.1 1.7@58
Valve Current : Pitch 0.2 1.7 0.2 1.7@58
(ma) Yaw 0.3 1.6 0.2 1.6@58
Engine 2
Gimbal Position Pitch 0.1 0.3 0.1 0.7@12
(deg) Yaw 0.3 0.4 1.6@58
Gimbal Rate Pitch 0.2 0.3 0.1 1.1@s6
(deg/sec) Yaw -0.1 1.6 0.1 1.6@58
Valve Current Pitch 0.2 0.2 0.3 0.4@88
(ma) Yaw 0.3 0.3 0.3 0.7@92
Engine 3
Gimbal Position Pitch 0.2 1.5 0.3 1.5@58
(deg) Yaw 0.3 1.3 0.1 1.3@58
Gimbal Rate Pitch 0.0 1.2 0.1 1.2@58
(deg/sec) Yaw 0.1 0.8 <0.1 0.9@92
Valve Current Pitch 0.2 0.2 -0.1 0.2@88
(ma) Yaw 0.5 0.6 0.5 0.9@88
Engine 4
Gimbal Position Pitch 0.2 0.4 0.1 1.0@73
deg) Yaw 0.3 1.5 0.3 1.5@58
Gimbal Rate Pitch 0.2 0.3 -0.1 0.8@13
(deg/sec) Yaw 0.1 0.8 <0.1 1.2@80
Valve Current Pitch 0.2 0.3 0.2 0.4@53
(ma) Yaw 0.4 0.5 0.3 0.8@88

9-4

l

n
i

|‘N N
i
o

[

Ir
| N

i L

o
Ih |

{



DEGREES

DEGREES

2.0

1.5

1.0

0.5

10 20 30 40 50 60 70 80 90 100 110 120 130

TIME, SEC
ENGINE 2
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Section 10

STRUCTURES

10.1 SUMMARY

A prelaunch structural assessment of SA-208 confirmed the vehicle fully qualified to
the design criteria following rework of F3 and F4 fuel tank forward bulkheads, and
correction of stress corrosion cracks discovered in both the upper E-beam of the fin

The maximum ground wind experienced by the SA-208 during the prelaunch period was
21 knots ( allowable with damper, 40 knots). The ground winds at launch were 7 knots,
and from the Southwest. The structural loads experienced during the S-IB boost phase
wete within design criteria values. The maximum bending moment was 1.06x10" N-m
at vehicle station 942 ( approximately 17 percent of design criteria bending). The max-

imum longitudinal dynamic responsés;’cifhe: instrument unit { IU) were 40.1g at both
S-IB inboard engine cutoff ( IECO) and outboard engine cutoff (OECO). The vehicle
structural responses during thrust cut-off were considered normal. POGO did not

occur during S-IB burn. -

Strain instrumentation used to monitor the structural performance of the S-IB-8 stage
consisted of eight LOX stud strain gages at Station 942 ( figure 10-1). The measured
pitch and yaw bending moments, as a function of range time, are presented in figure
10-8.

Longitudinal and lateral accelerati{)rn:sf;erre measured with five accelerometers ( figure
10-2): three on the S-IB stage, one on the IU and one on the command module. The

vehicle body-bending oscillations were recorded from eight accelerometers: six on
the S-IB stage and two on the command module.

10.2 TOTAL VEHICLE STRUCTURES EVALUATION

10.2.1 Longitudinal Loads

The SA-208 vehicle liftoff steady—sﬁté 7acce1eration was 1.25g. Maximum longitudihal
dynamic response measured during thrust buildup and release was 0. 1g in the IU and
+0.75 at the CM ( figures 10-3 and 10-4). Comparable values have been recorded on

previous flights.
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The SA-208 IECO and OECO transient responses were equal to or less than those of
previous flights. The maximum longitudinal dynamics resulting from IECO were
+0.1g at the IU and # 0.1g at the IU and +0.1g at the IU and £0.25g at the CM ( figure
10-4).

The total longitudinal load at station 942, based on strain data, is shown in figure 10-5
as a function of range time. The envelope of previous flights (S-IB vehicles SA-202
through -207) is shown for comparison. The maximum longitudinal load of 6.04x108
Newtons at time point 137.8 seconds is within design limit capability.

The longitudinal load distribution at the time of maximum bending moment (73.1 seconds)

and IECO ( 137.8 seconds) is shown in figure 10-6. The steady-state longitudinal
accelerations were 2.05g and 4.25g, respectively.

10.2.2 Bending Moments

The pitch and yaw winds-aloft profiles are shown in figure 10-7. The measured pitch
and yaw bending moments, together with their times, are presented in figure 10-8.
The wind velocities and vehicle bending can be correlated by comparing these figures.
The maximum measured flight bending moment of 1.06x10” Newton meters occurred
at 73,1 seconds. The measured bending moments at station 942 are the result of the
8 LOX stud strain gages, and do not include the increment carried by the 105-inch
LOX tank. The strain data must be increased by approximately 10 percent ( based on
previous flight analyses for which 105-inch LOX strain gage data were recorded) to
represent total vehicle bending moment.

The pitch, yaw, and resultant bending moments at 73.1 seconds are calculated based
on post-flight vehicle mass data, trajectory and control data (figures 10-9 through
10-11). The maximum computed bending moment was 1.25x10° Newton meters at
vehicle station 942, The bending moments in both the 105-inch tank and the 70-inch
tanks were determined by the internal loads analysis so that the measured loads could
be compared. The bending loads were very low compared to the design criteria
6.4x10% Newton meters.

10.2.8 Combined Loads

Combined compression and tension loads were computed for maximum bending moment
(73.1 seconds) and engine cutoff (~ 137 seconds) using measured S-IVB hydrogen
ullage pressure (32.0 psig). An envelope of these results plus an envelope of the
allowable combined loads are presented in figure 10-12. The S-IB is not included be-
cause the clustered stage does not lend itself to this format.

The minimum safety factors are plotted versus vehicle station in figure 10-13. The
minimum factor of safety of 1.54 at station 1186 was experienced at IECO. The mini-
mum design safety factor is 1.40.
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10.2.4 Vehicle Dynamic Characteristics

The longitudinal stability analysis on SA-208 has revealed all vibration and pressure
fluctuation to be smooth and low with no POGO instability. Peak vibration levels
accrued at liftoff, first stage cutoff and maximum dynamic pressure. Compressed

time strip charts of the SA-208 vehicle POGO data are shown in figures 10-14 and 10-15.

The first, second and third bending mode frequencies are compared to the modes pre-
dicated by dynamic analysis in figure 10-16. These predominant frequencies were
determined from flight data by power spectral density analysis and selected on the
basis of proximity to the predicted frequencies. Response amplitudes of these frequen-
cies as presented in figure 10-17, were low and similar to previous Saturn IB flights.
In general, the pitch response amplitudes were slightly higher than the yaw. The
greatest response recorded was0.065Grms in the pitch direction ( Station 895) during
the liftoff portion of flight.

10.3 STRUCTURAL ASSESSMENT

A prelaunch structural assessment of SA-208 confirmed the vehicle fully qualified to
the contractually designated design criteria and the required 1.4 manned safety factor
of the Skylab 4 mission. As a conservative approach, the flight envelope and ground
winds were restricted, presupposing structural problems originated from stress
corrosion following the last preflight inspection., B o -

10.3.1 Fuel Tank Forward Bulkhead Collapse

The forward bulkheads of fuel tanks 3 and 4 were collapsed during an RP-1 drain

operation ( see paragraph 5.3.1 and 7.6.1 for additional comments). Collapse occurred

because tank vent covers were not removed, causing a negative pressure on the bulk-
heads for which they were not designed. Tanks 3 and 4 were pressurized to restore
the bulkheads to contour and then proof-pressure tested to 21.0 psig. No cracks or
structural anomalies were found. Two new vent valves were installed to lower the
maximum flight pressure to 19.1 psig; normal setting is 21 to 21.5 psig.

10.3.2 Stress Corrosion Cracking

Durin'g a special inspection at KSC, a crack was discovered in the upper E-beam of the
outrigger assembly, fin position 4. Channel was made from stress-corrosion suscept-
ible material 7178-T6 AL alloy forging. ‘A 1 x 3 3/4-inch “coupon” of material was
removed from the channel web and a spacer and splice-plate installed to restore the
structure to the full capability of the undamaged hardware.

After the CDDT, stress-corrosion cracks were found in all eight fin assemblies, rear-
spar to thrust-structure E-beam attachment fittings. Seven fins had cracks in both left
and right fitting mounting bolt holes, one in only one fitting. All fins were replaced
with new (no CDDT) hardware and reinforcing blocks installed about the mounting bolts
at each fitting to provide an alternate loads path (a “fail-safe” feature) in the event
that cracks occurred after the last preflight inspection.
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Section 11

ELECTRICAL SYSTEMS

11.1 SUMMARY

The S-1B stage electrical system operated satisfactorily during the boost phase of
flight and all mission requirements were met.

1

11.2 S-IB ELECTRICAL SYSTEMS

Inflight power for the S-IB stage is supplied by two 28-volt, zinc-silver oxide batteries,
which are designated 1D10 and 1D20. Each battery is rated at a nominal 2000 ampere-
minutes. The power and distribution system consists of batteries, plug type junction
boxes and interconnecting circuitry. Three master measuring voltage supplies are
utilized to furnish a precisely regulated reference voltage to the telemetry system.
Each power supply converts 28-vdc to a regulated 5-vdc reference for use in the instru-
mentation measuring systems. The electrical networks for the S-IB-8 stage differed
from the networks of S-IB-7 as follows:' o

a. Effective with S-IB-8, all IN2150A diodes have been replaced in Propul-
 sion System Distributor 9A1 by SIN1204A diodes. The approved vendor
for IN2150A diodes had closed operations and the diodes became unavail-
able. SIN1204A diodes were used as an acceptable substitute.

b. Starting with S-IB-8, the circuitry of the fire detection system has been
simplified. The two plug-in type J-boxes, 9A10 and 9A11, used for
interconnection of the four groups of temperature sensors, have been
deleted. Interconnection is accomplished in cable 9W146 for S-IB-8.

Performance of the measurements related to the stage electrical system are given in
table 11-1. A complete analysis of the performance of discrete signals monitored over
the DDAS was obtained from data retrieved from the Central Instrumentation Facilities
(CIF) tape. The results compared favorably with previous S-IB flight records.

All thrust OK pressure switches and EBW units functioned properly. The average charge
time for the retrorocket EBW units was 0.71 seconds. The charge time for the separation

EBW units was 0.675 seconds. The destruct EBW units indicated no change. The Secure
Command System and Range Safety Decoder were operable during flight.
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Table 11-1. S-IB Electrical System Measurements (Sheet 1 of 4)
MEASUREMENT, REMARKS/RESULTS
NO. TITLE RANGE TIME-(SEC)
K1-12 Sw Selector Output Pulses Outputs as expected and normal
K2-12 First Motion (S-IB Liftoff) 0.42
K3-12 Cutoff Signal, Outboard 141.29
K15-02 LOX Level Cutoff 134.88*
K16-04 LOX Level Cutoff 135.05*
K17-F2 Fuel Level Cutoff 136.36%
K18-F4 Fuel Level Cutoff 136.44*
K37-11 Retro Rocket Ignition Signal (EBW) 142.60%
K53-12 Separation Prestart S-IB to 142.60%
S-IVB Signal
K65-13 Cutoff and Destruct Indicator No Change
CDR No. 1
K66-13 Cutoff and Destruct Indicator No Change
CDR No. 2
K67-12 Cutoff Signal, Inboard 137.82
K81-F2 Fuel Depletion Sensor No. 1 143.44*
K82-F4 Fuel Depletion Sensor No, 2 143,44*
K99-1 Eng 1 Cutoff (+1D11) 141,37%
K99-2 Eng 2 Cutoff (+1D11) 141.37*
K99-3 Eng 3 Cutoff (+1D11) 141.37*
K99-4 Eng 4 Cutoff (+1D11) 141.37%
© K99-5 Eng 5 Cutoff (+1D11) Fired and Shorted
K99-6 Eng 6 Cutoff (+1D11) 137. 88%
Fired and Shorted
K99-8 Eng 8 Cutoff (+1D11) 137.88*
K100-1 Eng 1 Cutoff (+1D21) 141, 29%
Fired and Shorted
*RDSM Data
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Table 11-1. S-IB Electrical System Measurements (Sheet 2 of 4)

MEASUREMENT TITLE REMARKS/RESULTS
NO. RANGE TIME-(SEC)
K100-2 Eng 2 Cutoff (+1D21) 141.29 %
Fired a_{kld Shorted
K100-3 Eng 3 Cutoff (+1D21) 141.23
K100-4 Eng 4 Cutoff (+1D21) 141,29 =*
K100-5 Eng 5 Cutoff (+1D21) o787 >
- ng utoff ( Fired and Shorted-
K100-6 Eng 6 Cutoff (+1D21) Fired rind Shorted
137.88
K100-7 Eng 7 Cutoff (+1D21) fired ind Shorted
K100-8 Eng 8 Cutoff (+1D21) 3797
Fired and Shorted
Closed Opened
Cian Eng 1 Thrust Press., Sw 1
- -1.59* 141.32*
K138-1 Thrust OK 5 41.32
Eng 1 Thrust Press, Sw 2
- ~-1.59% 141, 32*
K139-1 Thrust OK 5 41,32
Eng 2 Thrust Press. Sw 1
- ~-1.67* 1.40%*
K140-2 Thrust OK 6% 141,40
Eng 2 Thrust Press. Sw 2
- -1.67* 141, 4
K141-2 Thrust OK 67 41,40
. Eng 3 Thrust Press., Sw 1
149 -1.59* 141. 40%
K142-3 Thrust OK 9 41.40
Eng 3 Thrust Press. Sw 2
- -1.60* 141,39*
K143-3 Thrust OK 6u 41.3
Eng 4 Thrust Press. Sw 1 N N
K144-4 Thrust OK 1.76 141,40
Eng 4 Thrust Press. Sw 2 N «
K145-4 Thrust OK -1.68 141.39
Eng 5 Thrust Press, Sw 1 - -
K146.5 Thrust OK -1.92 138.07
\
Eng 5 Thrust Press. Sw 2
- - * *
K147-5 Thrust OK 1.93 138.06
Eng 6 Thrust Press. Sw 1 * «
K148-6 Thrust OK -1.84 138.07
*RDSM Data
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Table 11-1. S-IB Electrical System Measurements (Sheet 3 of 4)

MEASUREMENT,

REMARKS/RESULTS
NO. TITLE RANGE TIME- (SEC)
Closed Opened
¢ *
K149-6 Eng 6 Thrust Press. Sw 2 -1.85" 138.06
Thrust OK
*
K150-7 Eng 7 Thrust Press. Sw 1 -1.92* 138.07
Thrust OK
*
K151-7 Eng 7 Thrust Press. Sw 2 -1.93*% 138.06
Thrust OK
*
K152-8 Eng 8 Thrust Press. Sw 1 -1.84* 138.07
Thrust OK
*_
K153-8 Eng 8 Thrust Press. Sw 2 -1.86" 138.05
Thrust OK
K171-1 Eng 1 Thrust Press. Sw 3 -1.64" 141.35"
Thrust OK
K172-2 'Eng 2 Thrust Press. Sw 3 -1.72" 141.35"
Thrust OK
*
K173-3 Eng 3 Thrust Press. Sw 3 -1.56" 141.35
Thrust OK
K174-4 Eng 4 Thrust Press. Sw 3 -1.72% 141.35%
Thrust OK
K175-5 Eng 5 Thrust Press. Sw 3 -1.97* 138.10%
Thrust OK
K176-6 Eng 6 Thrust Press. Sw 3 -1.81* 138.10"
Thrust OK
K177-7 Eng 7 Thrust Press. Sw 3 -1.89" 138.10*
Thrust OK
* *
K178-8 Eng 8 Thrust Press. Sw 3 -1.81 138.10
Thrust OK
K205-9 Eng 1 or 2 or 3 or 4 Prevalve 141.31%
Cutoff Relay Control
*
K206-9 Eng 5 or 6 or 7 or 8 Prevalve 137.89
Cutoff Relay Control
K207-9 Eng 1 or 2 or 3 or 4 +1D11 On Off On
Tops Lock-up -0.10*% 0.49*  3.49*
K208-9 Eng5or 6 or 7 or 8 +1D11 On Off On
Tops Lock-up -0,10*% 0,49%* 3.49%*
*RDSM Data
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Table 11-1. S-IB Electrical System Measurements (Sheet 4 of 4)
‘MEAS TITLE REMARKS/RESULTS
NO. RANGE TIME- (SEC)
K211-12 +1D11 IECO 137.91*
K212-12 +1D21 IECO 137.91%
K213-12 +1D11 OECO - 141.82%
K214-12 +1D21 OECO 141.32%
K215-12 +1D11 RSCR Cutoff Normal
K216-12 +1D21 RSCR Cutoff Normal
M1-9 Meas Volt No, 1 (+1D81 Ind) Normal
M2-9 Meas Volt No. 2 (+1D82 Ind) Normal
M9-12 Meas Volt (+1D89 Ind) Normal
M16-12 D21 Bus Voltage Within expected range
M17-12 D11 Bus Voltage Within expected range
M18-12 D10 Battery Current Battery currents are approximately as predicted
M19-12 D20 Battery Current Battery currents are approximately as predicted
Start Finish At % Fire DC Volt
M42-400 EBW No. 1 Volt(Retro No. 1) 134.9 135.55 0.65 86.5 142.6 2378
M43-400 EBW No. 2 Volt(Retro No. 1) 135.1 135.9 0.8 86.0 142.6 2365
M44-400 EBW No. 1 Volt(Retro No. 2) 134.9 135.7 0.8 86.0 142.6 2365
M45-400 EBW No. 2 Volt(Retro No. 2) 135.0  135.7 0.7 86.5 142.6 2378
M46-400 EBW No. 1 Volt(Retro No. 3) 134.9 135.5 0.6 86.0 142.6 2365
M47-400 EBW No. 2 Volt(Retro No. 3) 135.0 135.7 0.7 87.0 142.6 2392
M48-400 EBW No. 1 Volt(Retro No. 4) 134.8 135.6 0.7 86.0 142,7 2365
M48-400 EBW No. 2 Volt(Retro No. 4) ‘ 135.1 135.85 0.75 87.5 142,7 2406
M63-11 Destruct EBW Voltage No. 1 No Change
M64-11 Destruct EBW Voltage No. z' No Change
M68-400 EBW Volt No. 1(Separation) 134.9 135.55 0.65 86.5 142.6 2378
M69-400 EBW Volt No. 2(Separation) 135.1 135.8 0.70 86.5 142.6 2378
*RDSM Data
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Evaluation of the EBW firing unit response indicated that all EBW firing units charged
and discharged. All firing units operated similarly, discharging to approximately
125v or less, then decaying as expected.

The ramp generator, used to produce a ramp output measurement at liftoff (K2-12),
IECO (K67-12) and OECO ( K3-12), showed a ramp output five times during the flight.
The first ramp output { K2-12) occurred at approximately 0.42 seconds. This compares
favorably with the ESE DEE-6 output. The second and third ramp outputs were not
desired events, because they were triggered as a result of the switch selector command
signals, TM Cal Off at 25.43 seconds; and again TM Cal Off, at 125.24 seconds. Both
undesired ramps were triggered unintentionally, although not totally unexpectedly, and
had no effect either upon the operation of the stage networks or on data retrieval.

These extraneous ramp output pulses were easily correlated to the actual flight events
occurring in the Flight Sequence Program. The forth and fifth ramp outputs, TECO

and OECO, occurred when normally expected.

The data on measuring voltage 1D81, 1D82 and 1D89 ( figures 11-1 through 11-3)
showed satisfactory performance of the voltage supplies. The voltage deviation for the
three power supplies did not exceed 10 millivolts, which was less than one-fifth of one
percent of the supply voltage, and well within the tolerance of £12 millivolts.

The performance of the two batteries was very close to predicted and is shown in

figures 11-4 through 11-7. The battery power consumption from activation to loss of
signal ( LOS) at 382 seconds is tabulated in table 11-2 for each battery.

Table 11-2, S-IB Stage Battery Power Consumption

POWER CONSUMPTION
BATTERY ACTIVATION | FLIGHT | SEP TO LOS TOTAL
1D10 % 7.2 % 1.5 % 4.1 % 12.8
A-M 144 | A-M30,8| A-M 81.2 | A-M 256
1D20 % 8.0 % 3.1 % 4.1 % 15,2
A-M 159 | A-M63.3|A-M 81.4 A-M 303.7
11-6
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Section 12
PRESSURE ENVIRONMENT

12,1 SUMMARY

Base pressure data obtained from SA-208 have been compared with preflight predictions
and/or previous flight data and show good agreement. Base drag coefficients were also
calculated using the measured pressures and actual flight trajectory parameters.

There were three base pressure measurements made in the S-IB base region; two on
the heat shield and one on the flame shield. One measurement on the heat shield was
a differential pressure across the shield, whereas the other two measurements were
of absolute pressures. The approximate position and instrument number designation
of these three measurements are shown in figure 12-1.

1]

D122-3

D600-8

! AP DIFFERENTIAL PRESSURE

P ABSOLUTE PRESSURE

Figure 12-1. S-IB Base Region Pressure
Instrumentation

12,2 S-IB BASE PRESSURE

Results of the heat shield and flame shield absolute pressure measurements are shown
in figures 12-2 and 12-3, respectively. These data are presented as the difference
between measured base pressures and ambient pressure. Values are compared with
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the band of data obtained from previous S-IB flights of similar vehicle base configura-
tion and show good agreement. Both the heat shield and flame shield pressure meas-
urements were almost identical to the data from SA-206 and SA-207 flights. The data
indicate that during the first 70 seconds of flight (6 N Mi.) the H-1 engine exhausts
were aspirating the heat shield region, resulting in base pressures below ambient
pressures. In the flame shield area, the aspirating effect was terminated by an altitude
of 4 nautical miles. Above these altitudes the reversal of engine exhaust products, due
to plume expansion, resulted in base pressures above ambient.

Pressure loading measured near the outer perimeter of the SA-208 heat shield is com-
pared with data from previous flights in figure 12-4. The SA-208 data remained on the
lower side of the data band during the first 7 nautical miles of flight, This also occurred
on the SA-206 and SA-207 flights and the agreement is very good.

Also shown on the figure are the predicted AP deviations for the heat shield, The flight
values are well within these limits during the entire flight. Above 15 nautical miles
altitude, the SA-208 flight data return to near zero indicating the engine compartment
has vented to near base pressure. This is normal and has occurred on all previous
flights except SA-205.

12.3 S-IB BASE DRAG

Base drag coefficients calculated from the SA-208 data are compared to the data band
from previous flights in figure 12-5. The comparison is very good considering the
drag coefficients were determined from measurements taken at only two locations on
the base. However, they are representative of average base pressures.
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PRESSURE COEFFICIENT .
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Section 13
THERMAL ENVIRONMENT
13.1 SUMMARY o

Data traces from the seven SA-208 S-IB stage base thermal measurements have been
compared with corresponding data from the flights of SA-203 through SA-207. These
comparisons indicate an SA-208 base region thermal environment of comparable mag-
nitude, with the flame shield radiant data trend being similar to that recorded on SA-207,

The S-IB stage base region thermal environment of SA-208 was recorded by three gas

temperature thermocouples and four heat flux calorimeters, The positioning of each
of these seven thermal measurements in the heat shield and flame shield areas is shown
in figure 13-1. Data from these SA-208 measurements are compared with bands formed
by the maximum and minimum data extremes recorded by comparable instrumentation

on previous flights.

T TOTAL CALORIMETER
R RADIATION CALORIMETER

G 'GAS TEMPERATURE CALORIMETER

13.2 S-IB BASE HEATING

Heat shield thermal environment data are presented as a function of vehicle altitude in
figures 13-2 through 13-5. As indicated by these comparison plots, the SA-208 heat
shield thermal environment was nominal. Data trends were consistent with those
established on previous flights and deviations from previous data extremes were minor.
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In the flame shield area the recorded SA-208 thermal environment was similar to that
experienced on SA-207. Total heating rate and gas temperature data were generally
in the upper portion of the previous data bands through the first 55 seconds of flight;
i.e., to a vehicle altitude of approximately 3.35 n mi. These data are presented vs.
vehicle altitude in figures 13-6 and 13-7, respectively. During this same period, the
SA-208 flame shield radiation data ( presented in figure 13-8) were generally above the
data trend established through the flight of SA-206, but slightly below that of SA-207,
At an altitude of approximately 4.51n mi, the flame shield thermal environment leveled
off to a steady nominal level, At this altitude the inboard engine exhaust plumes had
expanded sufficiently to interact and cause a sustained flow reversal of exhaust gases
onto the flame shield. This reversal held the relatively cool ( 800°K) and opaque in-
board engine turbine exhaust gases near the flame shield surface, and resulted in a
substantial reduction in the magnitude of the flame shield thermal environment.

Because of the similarity of the SA-208 and SA-207 data, possible causes of the flame
shield radiant heating deviations were again investigated and still no definite conclusion
was reached as to why the data differed from the trend established during the previous
four flights, The data appear to be valid. The flame shield and turbine exhaust duct
configurations were essentially unchanged from previous vehicles since SA-203.

Three explanations for more radiation reaching the flame shield radiometer have been
offered:

a. A reduction in opacity of the turbine exhaust gases.
b. Sustained local afterburning of the turbine exhaust gases.

c. A variation in incident radiation correlated to the variation in inboard
engine thrust level,

A possible correlation between inboard engine thrust and flame shield radiation has
been investigated and a comparison of the data for flights SA-203 to SA-208 is shown

in figure 13-9. The apparent correlation suggests a mechanism whereby the increased
thrust level of the inboard engines may be responsible for the decreased opacity of the
turbine exhaust gases, but analytical confirmation is not possible within the state of the
art,

Although available data will not support a final conclusion as to the cause of the increased

flame shield radiant heat level, the flame shield because of its high thermal design
capability, is not in jeopardy as shown in figures 13-10, 11 and 12, Since the reroute
of the inboard engine turbine exhaust duct, effective on SA-203, the recorded flame
shield radiant heat load through the first 55 seconds of flight has not exceeded 50 per-
cent of the design level ; beyond 55 seconds of flight ( above an altitude of 4 n mi)
recorded data have been below 15 percent of the radiation design level. No further
action is contemplated.
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Section 14
ENVIRONMENTAL CONTROL SYSTEM
14,1 SUMMARY

Thermal conditioning of the S-IB stage forward and aft compartments was satisfactory
during prelaunch operations. Critical component temperatures in the instrument and
engine compartments were maintained well within their qualification limits.

14,2 S-IB ENVIRONMENTAL CONTROL

During prelaunch operations, measurement 12K22 was monitored to assess ECS flow
and supply temperature requirements for maintaining the engine compartment tempera-
ture within the specified limits of 53 and 75°F. For SA-208 this measurement indicated
that the aft compartment was maintained at approximately 60°F for 7 hours prior to
liftoff. In maintaining this temperature, the ECS flow to the compartment was nominal,
with GNg being supplied at 300 lbm/min with a measured interface temperature of
131°F.

As shown by the data presented in figure 14-1, the S-IB stage engine compartment
flight thermocouples ( measurements XC61-1 through XC61-4) recorded prelaunch
temperatures below the 60°F indicated by 12K22. This was due primarly to the position-

ing of the four flight instruments, and in part to their data recording accuracy.

Within the S-IB stage instrument compartment, two battery case temperature measure-
ments were taken prior to liftoff. Recorded data from these measurements, WXC528~12
and WXC529-12, indicate the battery temperatures remained at approximately 74°F
throughout countdown. This temperature was maintained by a GNg conditioning mass
flow of 45 lbm/min at a recorded compartment interface temperature of 77°F.

It was concluded that the critical components in the engine and instrument compartments
were well within their qualification limits.

14-1
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“=~"Section 15
DATA SYSTEMS
15.1 S-IB MEASUREMENTS EVALUATION

Performance of the flight measuring system on the S-IB stage was satisfactory, result-
ing in an overall measurement system reliability of 100 percent. The stage had 266
measurements scheduled for flight; one measurement was waived prior to start of the
automatic countdown sequence;.wg;ﬁwt‘@o measurements experienced partial failures
during flight. These measurement problems had no significant impact on postflight

evaluation,
A summary of S-IB stage measurement reliability is presented in table 15-1. The
waived measurement and partially failed measurements are listed in tables 15-2 and

15-3.

Table 15-1. S-1B Measurement Summary

MEASUREMENT CATEGORY S-IB STAGE
Scheduled 266
Waived 1
Failed 0
Partial Failed 2
Questionable 0
Reliability
Percent 100

15.2 AIRBORNE VHF TELEMETRY SYSTEMS EVALUATION

vehicle exceeded each subsystem’s limitation, well beyond the requirements of the
S-IB stage as shown in table 15-4., The GP-1 and GF-1 signals terminated at MILA at
397 seconds, and at CIF at 382 seconds as indicated in figure 15-1,

15-1
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No loss of GP-1 (PCM) synchronization occurred in the CIF ground stations. CIF
receiving stations received a disturbance during the first 10 seconds of flight but did -

not lose synchronization. Analysis of the signal strength oscillograms indicates that =
bursts of electrical noise are apparent from T-0 to approximately T + 10 seconds.
The signal strength data indicate a varying signal strength was experienced during -
the first 13 seconds of flight, The high electrical noise environment and varying
signal strength are normal for the first few seconds of flight. o
Table 15-2. Flight Measurements Waived Prior to Flight
MEASUREMENT| MEASUREMENT NATURE OF REMARKS —
NUMBER TITLE FAILURE
L0501-0F1 Fue! Leve! Discrete Intermittent out- Access to probe
put from probe No, | located inside fuel -
3 {sensor 15) tank No, 1 is not
photoelectric cell | feasibie. Measure-
ment has no LMR —=
clagsification; —-—
(reference Devia-
tion Waiver
1-C-208-1), Valid L=
data received dur- -
ing flight.
Table 15-3. Measurement Malfunctions —
: TIME OF DURATION ..
ASUREMENT NATURE OF .-
MEASUREMENT| ME SLE FAILURE FAILURE |SATISFACTORY| REMARKS —
(RANGE TIME)|] OPERATION
XC0089-001 Temperature Gear | Measurement drop-|  1)g gec 116 sec Probably caused
Case Lubricant ped to zero and re- by either trans- =
mained there, ducer, amplifien —
' or wiring failure,
DU013-002 Pressure LOX | Recorded value de- 20 sec 62 sec | Failure indic- =
Pump Inlet creased and becamd o 100 sec |0 to 20 sec;  |J ative of wiper -
noisy. Returned to 100 to 142 sec.|] lifting from
normal 80 sec later potentiometer. ~
-
MiLA FllllllllIlllIIIIlIlIIlIIIIIIIlIlII!lllllllllllllllllllIlll!llllll.ll! :
—_—
CIF Iouananaa(onnnessnca s st ssaneRsgaupea (i tisnnasuonureesesinsissispensae
0 100 200 300 400 500 =
RANGE TIME, SEC
Figure 15-1. VHF Telemetry Systems Coverage Summary -
L —
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Table 15-4. S-IB Stage Telemetry Links

FREQUENCY FLIGHT PERIOD PERFORMANCE
M LATION TAGE

LINK (MH) ODULATI STA (RANGE TIME, SEC) SUMMARY

GF-1 240.2 FM/FM S-1B 0 to 142.1 Satisfactory

GP-1 256.2 PCM/FM S-1B 0 to 142.1 Satisfactory

At OECO(141. 2665 through 141, 3165 seconds) the RDSM indicated 7 unexpected

functions on channels monitoring flight data. By 140.4332 seconds all unexpected

function indications had returned to normal.

The expected functions occurred norm-

ally during the time period. All data are recoverable; analysis indicates that at
OECO, 12 of the engines’ thrust OK relays deenergized normally, causing a transient

which was picked up by the RDSM

The S-IB stage inflight calibration times were sequenced as programmed (able 15. 5).

Table 15-5. S-IB Stage Inflight Calibration Times

LINE FIRST CALIBRATION, SECOND CALIBRATION
(SEC) (SEC)
GP1 AO Multiplexer 21.27 121. 14
GP1 BO Multiplexer 21.93 121.76
GF1/FM Link 22.6 122. 4

15.3 SECURE RANGE SAFETY COMMAND SYSTEMS EVALUATION

The low-level field measurements for the S-IB stage Command Receivers (CDR) 1
and 2 indicated that both receivers generally had maximum signal strength through-
out the flight as shown in table 15-6.

4
Table 15-6. S-IB Secure Command Receiver Measurements

L ———

MEASUREMENT . MEASUREMENT
NO. NAME REMA RKS
Mb505-13 CDR No. 1 Low Level Field 3.55 volts (max. signal)
M508-13 CDR No. 2 Low Level Field 3.60 volts (max. signal)
K65-13 CDR No. 1 Cutoff and Destruct | 1.2 volts (normal meas.)
K66-13 CDR No. 2 Cutoff and Destruct | 1. 15 volts (normal meas.)
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Section 16
FAILURES AND ANOMA LIES
16.1 SUMMARY

Evaluation of the S-IB stage data revealed no failures, anomalies or significant anoma-
lies detected.

16.2 SYSTEM FAILURES AND ANOMALIES
There were no significant S-IB stage system failures or anomalies.
16.3 RECOMMENDATIONS FOR CORRECTIVE ACTION

There are no recommendations or corrective actions necessary due to the satisfactory
performance of the S-IB-8 stage.
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Appendlx A

VEHICLE PROFILE

The 2-stage, liquid-propellant Saturn IB launch vehicle is utilized in the Skylab pro-
gram to transport the 3-man crews to the Saturn Workshop (SWS) in earth orbit.

In figure A-1, a profile of the Saturn IB vehicle, the cutaway portions identify the
first powered stage (S-IB), the second powered stage (S-IVB), the instrument unit
(IU), and the major features of these stages.

S-1B STAGE

The function of the S-IB stage is to boost the upper stages and spacecraft through a
predetermined trajectory that will place them at the proper altitude and attitude, with
the proper velocity at S-IVB stage ignition. The major S-IB stage assemblies,
figures A-2 through A-4, are the tail unit with eight fins and eight H-1 engines, the
nine propellant tanks, the second stage adapter (spider beam unit), and associated
mechanical and electrical hardware discussed under specific systems in this section.
For a summary of S-IB stage data, see table A-1,

STRUCTURE

Figure A-2 shows the primary load -Ct rymg structural subassemblies of the S-IB
stage combined with its tail unit heat and flame shields, engine flame curtains, LOX
and fuel tank firewalls, and second stage adapter seal plate. Separate figures show

the unique design details of the tail unit heat shield, and also the spider beam and LOX
fitting reinforcements employed as a result of qualification testing. The stage structure
was designed to provide a safety factor of 1.10 on yield and 1.40 on ultimate, with a

dry stage weight of 85,745 lbm. The adequacy of the 1,40 safety factor (ultimate) has
been demonstrated by all Ioad—carrymg structural subassemblies. From a reliability

pomt of view, the stage structure isa sn le 7 passtve system, and its reliabil 1ty pre-

several times greater than the reliabil ttlre,s of the other stage systems. Thus, with
respect to the rest of the onboard systems, the structure has been assumed to be

100 percent reliable within the performance limits established by the CEI specification,
and is considered so for purposes of calculating total stage reliability., The principal
functional requirement of the stage structure is to provide adequate tankage and frame-

A-1
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Table A-1. Summary of 5-IB Stage Data

HYDRAULIC SYSTEM

ACTUATORS (OUTBOARD ONLY)
GIMBAL ANGLE

GIMBAL RATE

GIMBAL ACCELERATION

2 PER ENGINE
+ B8 DEG SQUARE PATTERN
15 DEG/SEC iN EACH PLANE

1776 DEG/SECE

PROPELLANT LOAD

DIMENSIONS
LENGTH 80.2 F1
DIAMETER
AT PROPELLANT TANKS 21.4F7
" AT TAIL UNIT ASSEMBLY 22.8F7
AT FINS 40.7FT
FIN AREA 53.3 £12 EACH OF 8 FINS
MASS
DRY STAGE 84,521 LBy,
LOADED STAGE 997,127 LBy,
AT SEPARATION 95,159 LB,y
ENGINES, DRY, LESS
INSTRUMENTATION
INBOARD, PLUS TURNBUCKLES  |2,003LB,, EACH
OUTBOARD, LESS HYDRAULICS 1980 LB, EACH

912, 606 LB, (408,000 KG)

ENGINES
BURN TIME
TOTAL THRUST (SEA LEVEL)
PROPELLANTS
MIXTURE RATIO
EXPANSION RATIO
CHAMBER PRESSURE
OXIDIZER NPSH (MINIMUM)
'FUEL NPSH (MINIMUM)
GAS TURBINE PROPELLANTS
TURBOPUMP SPEED
ENGINE MOUNTING

INBOARD

OUTBOARD

14) SEC (APPROX)

1.64 MLB¢

LOX AND RP-}

2,231+ 2%

8:1

702 pila

35FT OF LOX OR 45 psia
35FT OF RP=1 OR 7 psia
LOX AND RP-1

4490 RMP

32 IN. RADIUS, 3 DEG
CANT ANGLE

95 IN. RADIUS 6 DEG
CANT ANGLE

PRESSURIZATION SYSTEM
OXIDIZER CONTAINER
FUEL CONTAINER
OXIDIZER PRESSURE

PREFLIGHT
INFLIGHT
FUEL PRESSURE
PREFLIGHT
INFLIGHT

ULLAGE
OXIDIZER

FUEL

INITIAL HELIUM FROM GROUND SOURCEy
S-1B BURN, GOX
HELIUM

58 psia

50 psia

17 psig
1570 17 mig

1.5%

2.0%

PREFLIGHT AIR CONDITIONING

PREFLIGHT GN; PURGE

ENVIRONMENTAL CONTROL 5YSTEM

AFT COMPARTMENT & INSTRUMENT
COMPARTMENTS F1 & F2

AFT COMPARTMENT & INSTRUMENT
COMPARTMENTS F1 & F2

ASTRIONICS SYSTEMS
GUIDANCE

TELEMETRY LINKS

ELECTRICAL

PITCH, ROLL, AND YAW PROGRAM THRU
THE 1U DURING 5-18 BURN

FM/FM, 240.2 MHz; PCM/FM, 256.2 MHz

BATTERIES, 28 Vdc {2 ZINC-SILVER OXIDE)
MASTER MEASURING
VOLTAGE SUPPLY, 28 Vde TO 5 Vde.

RANGE SAFETY SYSTEM

PARALLEL ELECTRONICS, REDUNDANT
ORDNANCE CONNECTIONS,

—

Netes ALL MASSES ARE APPROXIMATE.

“work to support the other flight systems and to provide adequate support of the upper
stages, both on the pad and in flight. The evolutionary structural changes resulting
from design analyses, test results, static firings, and flight performance data are
summarized separately in the discussion pertaining to the individual structural ele-

ments.

PROPELLANT TANKS

The nine propellant tanks that cluster to form the main body of the stage are modifi-
cations of proven designs from the Redstone and Jupiter vehicles and have performed
successfully on all Saturn I and IB flights. The individual tanks are constructed of
cylindrical sections built up of mechanically milled, butt welded, aluminum alloy
skin segments that are internally reinforced with rings to form a monocoque -type of
construction. The material used to construct the tanks is the readily weldable 5456

aluminum alloy in the H343 temper.

The use of this alloy allows for considerable
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tank weight reduction over the 5086 arid, 5052 alloys used to construct the Jupiter and
Redstone tanks, respectively. Tank wall thickness varies from top to bottom in rela-
tion to stress distributions. Hemispherical bulkheads are welded to the forward and
aft end of the cylindrical sections, and a sump is welded to the aft bulkhead. A
pressurization and vent manifold is fastened to the forward bulkhead of each of the
LOX tanks. A cylindrical skirt reinforced with longerons is attached to the forward
and aft bulkheads to complete a basic tank., The eight outer tanks are 70 inches in
diameter and contain L.LOX and fuel alternately. The center tank is 105 inches in
diameter and contains LOX. The center L.OX tank is bolted to the spider beam and

is attached to the tail barrel with Huck bolts. Ball-and-socket fittings attach the

aft ends of the 70-inch LOX tanks to the tail unit, Banjo fittings and studs rigidly
secure the forward ends of the LOX tank to the spider beam. The fuel tanks are
supported by ball-and-socket fittings at the tail unit. During shipment, banjo fittings
rigidly secure the fuel tanks to the tail unit; however, they are removed before flight.
The forward ends of the fuel tanks are mounted to the spider beam unit by sliding pin
connections, allowing the LOX tanks to shorten due to thermal contraction when
loaded. In summary, the major structural improvements incorporated into the
propellant tanks are revised skin gages and reduced bulkhead and frame gages to agree
more closely with stress levels, inversion of the aft dome manhole cover in the center
tank, and the addition of GOX interconnect domes (with the related forward skirt cut-
outs) and a GOX pressurant diffuser. Also, the fuel tanks on SA-206 and subsequent
vehicles are painted white instead of black for thermal reasons.

TAIL UNIT

Primarily, the tail unit rigidly supports the aft ends of the propellant tank cluster
and the vehicle on the launcher; mounts the eight engines and fins; and provides the
thrust structure between the engine thrust pads and the propellant tanks. Other func-
tions of the tail unit are to support the lower shroud panels, LOX and fuel bay fire-
walls, heat shield support beam and panel assemblies, engine flame curtains, and the
engine flame shield support installation. Unlike the propellant tank units, the tail
unit is constructed with higher strength aluminum alloys of the 7000 series that are
heat-treated to the T-6 or the T-73 condition.

The 7000-series aluminum alloys used in the tail unit assembly are not recommended
for welded applications because of low welding efficiencies. These alloys are used in
unpressurized areas where the assembling is done with mechanical fasteners. The
tail unit thrust structure configuration lends itself to this definition; and high-strength,
heat-treatable 7000-series aluminum alloy forgings, extrusions, plates and sheets are
fabricated into components that are joinéd with mechanical fasteners to construct the

tail unit assembly.

Because of the susceptibility of the high strength aluminum alloys to stress corrosion
cracking, methods have been employed in the design and manufacture of the tail unit
assembly which minimize the danger of failure due to stress corrosion cracking.
Methods employed are: heat treatment to the T-73 condition, heat treatment after
heavy machining operations, the use of closed-die forgings, and the use of adequate
final protective finishes.



The tail unit consists of a barrel assembly, 105 inches in diameter, that directly
supports the center propellant tank, encloses the inboard engine thrust beams, and
acts as the hub for the four thrust support outriggers and the four fin support out-
riggers, The four thrust support outriggers also act as fin support outriggers. The
fin support outriggers are similar to the thrust support outriggers but differ mainly
in that they have no thrust support beam or actuator support beam. The outer ends
of the outriggers are spanned by upper and lower ring segments and eight upper shroud
panels to form the basic thrust structure. Eight smooth and eight corrugated lower
shroud panels are attached to the aft end of the thrust structure to form a compart-
ment for the eight H-1 engines. LOX and fuel bay firewall panels are installed to
cover the space between the outrigger assemblies and the space over the aft end of
the barrel assembly.

A reinforcing beam structure is fitted into the aft end of the lower engine shroud
assembly. The heat shield panels, engine flame curtains, and flame shield support
installation are attached to the beam structure. The heat shield honeycomb composite,
unlike most other honeycomb composites used in the vehicle utilizing phenolic cores
that are adhesively bonded to face sheets and are limited by the upper and lower
temperature constraints on the adhesive system, consists of both corrosion-resistant
steel foil cores and thin face sheets that are joined by a brazing process. The 0.25-
inch square-cell core is brazed to both the inner and outer face sheets, has a layer
thickness of 1.00 inch and acts as the chief structural core member of the composite.
The 0.50-inch square-cell core is brazed to only the outer face sheet, has a layer
thickness of 0.25 inch, and acts as the thermal insulation retaining member of the
composite structure. M-31 insulation is trowled into the retaining core cells.
Laboratory tests have generally demonstrated that, compared with adhesively

bonded honeycomb composites, brazed honeycomb composites are over 100 percent
greater in tensile strength, over 75 percent greater in core shear strength, over 20
percent greater in edgewise compression strength, and equal in flatwise compression
strength. This heat shield design provides a lighter panel with increased stiffness
which greatly improves the retentlon of the M-31 insulation material. Successful
results of laboratory testing and static tests of the S-1-10 and S-IB-3 through S-IB-7
stages have fully qualified this heat shield panel design. In addition to the heat shield
assembly, the tail unit of the S-IB incorporates fin attachment fittings, gage reduction
of sheet-metal and framing, and removal of the engine skirts from the lower shroud
assembly.

FINS

The eight fins of semi-monocoque construction, provide aerodynamic stability in

the mid-region of first stage flight and support the vehicle on the launch pad prior to
ignition and during the holddown period after ignition. A fin is fastened mechanically
to each of the four thrust support outriggers and the four fin support outriggers. A
heat shield is attached to the trailing edge to protect the fin from engine exhaust, and
a plate is fastened to the tip of the fin between the leading edge and the heat shield.
Skin panels are riveted to the ribs and spars, completing the structure and forming a
smooth aerodynamic surface. The fins used on the S-IB stage are identical, replacing
the arrangement of four large-fins and four stub-fins used on the S-I stages.
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SPIDER BEAM UNIT

The spider beam unit holds the propellant tank cluster together at the forward end and
attaches the S-IB stage to the S-IVB aft interstage. The five LOX tank units are
rigidly attached to the spider beam while the fuel tank units are attached with sliding
pin connections, Structurally, the spider beam consists of a hub assembly, to which
eight radial beams are joined with upper and lower splice plates by mechanical
fasteners. The outer ends of the radial beams are spanned by crossbeams and joined
with upper and lower splice plates by mechanical fasteners. Like the tail unit thrust
structure, the spider beam is constructed of extrusions and fittings made of high-
strength, heat treatable aluminum alloys of the 7000-series that are heat-treated to the
T6 condition., To form an aft closure for the S-IVB stage engine compartment, 24
honeycomb composite seal plate segments of approximately 0, 05 inch thickness are
fastened to the forward side of the spider beam. The seal plate honeycomb composite
consists of 5052 aluminum alloy foil core material adhesively bonded to 7075-6
aluminum alloy face sheets to form_thinner and lighter panels than those used on the
S-1stages. During qualification testing of the S-IB stage spider beam, a failure of
the LOX tank fitting occurred. A radial beam reinforcing angle and bracket, cross-
beam web stiffening brackets and a reinforced mounting stud flange were incorporated
to fix each of the eight LOX tank fittings, Other changes incorporated into the spider
beam design for the S-IB stages are the reduction of beam gages and the removal of
retrorockets, 45-degree fairing, and radial beam tips. This unit is qualified and

has performed successfully on all Saturn IB flights.

PROPULSION

The S-IB stage propulsion system consists of an 8-engine cluster of H-1 engines

that burn LOX and RP-1 fuel to propell the Saturn IB vehicle during the first boost
phase of powered flight. Propellant from the LOX and fuel tanks feeds the H-1
engines under tank pressure to ensure the NPSH necessary for satisfactory engine
operation. Boosters S-IB-1 through S-IB-5 used engines developing 2000, 000 1bf of
thrust for a total stage thrust of 1,600, 000 1bf. Boosters S-IB-6 and subsequent use
engines developing 205, 000 1bf of thrust for a total stage thrust of 1,640, 000 1bf.
Four inboard engines are mounted 90 degrees apart (at vehicle positions I, II, III,
and IV) on a 32-inch radius from the vehicle longitudinal axis, and are canted 3 degrees
outboard from the vehicle centerline. Four outboard engines are gimbal -mounted

90 degrees apart (at fin lines 2, 4, 6 and 8) on a 95-inch radius from the vehicle
longitudinal axis. The engines cant outboard 6 degrees from the vehicle centerline.
Each of the eight engines is attached by a gimbal assembly to its thrust pad on the
tail unit thrust structure. Inboard engine thrust pads are on the barrel assembly and
outboard engine thrust pads are on the thrust support outriggers. Although the in-
board engines do not gimbal for vehicle control, the gimbal assemblies permit align-
ment of the engines to the thrust structure; two turnbuckles used on each inboard
engine, with the gimbal assembly, align and secure the engine in place. Two hydraulic
actuators and a gimbal assembly secure each outboard engine to the thrust structure.
The actuators attach to an actuator support beam, which is part of the thrust support
outrigger. The actuators, one mounted in the pitch plane and one in the yaw plane,
gimbal the engine for vehicle attitude control. The engine gimbal centerline for both

A-9



outboard and inboard engines lies in a plane perpendicular to the vehicle longitudinal

axis at vehicle station 100 (figure 5), Canting the engines provides stability by —
directing the thrust vectors to common points on the vehicle longitudinal axis. The
outboard engine thrust vectors intersect the longitudinal axis at vehicle station 1004,
while the inboard engine thrust vectors intersect the longitudinal axis at vehicle
station 711. The difference in cant angles and radii from vehicle centerline account
for the two different intersect points. Directing the thrust vectors to the vehicle
longitudinal axis reduces the possibility of excessive loading of the vehicle structure e
in the event of engine(s) failure during flight.

Cl

S-IB-8 CONFIGURATION DIFFERENCES

The significant configuration differences between S-IB-8 and S8-IB-7 are listed in o
table A-2.
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Table A-2. S-IB Configuration Changes

SYSTEM

CHANGE

REASON

Structures

Repair of crack in channel,
upper outrigger assembly,
fin position 4, Remove
1-in. x 3-3/4-in, coupon
containing crack and install
spacer and splice plate,

Crack detected on the stage
at KSC during special in-
spection conducted after
imperfection noticed in sur-
face of same channel on
stage S-1B-9, Channel is
made from stress corrosion
susceptible material 7178-T6
AL alloy forging. Removed
cracked area to preclude
propagation,

Add reinforcing blocks at fin
rear spar attachment fittings.,
Shim mating surfaces between
fin and outrigger as required.,

Cracks detected in rear spar
attachment fittings of all eight
fins during post CDDT inspec-
tion.. All eight fins replaced;
reinforcing blocks added to
provide fail-safe (i.e, alter-
nate loads path) feature in
event cracks occur after

last preflight inspection,

Rework of fuel tanks F3 and F4

Upper bulkheads of fuel tanks
F3 and F4 were reformed
pneumatically to original
contour following accidental
damage during launch
operation,

Propulsion and
Mechanical

Reduction in fuel vent valve
relief pressure and prepres-
surization pressure,

Accidental damage to upper
bulkheads on fuel tanks F3 and
F4 necessitated lowering relief
setting from 21,0-21,5 psig to
19,0-19,1 psig to maintain an
adequate structural margin,
Maximum prepressurization
pressure reduced from 18,5
psig fo 18 psig.

Addition of expansion loop
in fuel vent sensing lines.

Accidental damage to upper
bulkheads on fuel tanks F3
and F4 caused the bulkheads
to have more deflection than
normal causing a strain on the
fuel vent sensing system,




Table A-2, S-IB Configuration Changes ( Continued)

SYSTEM

CHANGE

REASON

Instrumentation

e Modification of multiplexer
270 DC-DC converter.
Changes include:

- Removing capacitor C-15
from the circuit

- Removing capacitor C-2
from the circuit

- Changing Q3 from 2N2218
to JAN2N2218A,

e To improve the reliability
of the DC-DC converter in
the 270 multiplexer.

Electrical

e Two plug-in type J-boxes,
9A10 and 92A11, used for
interconnection of the four
groups of temperature
sensors, have been deleted.

e Circuitry of the fire detec-
tion system has been simpli-
fied. Interconnection is

accomplished in cable
IW146.

e IN2150A diodes replaced in
propulsion system distributor
9A1 by SINT204A diodes.

e The approved vendor for
IN2150A diodes has closed
operations and the diodes
are unavailable. SINT204A
diodes are used in other
Saturn stages and electrical
characteristics equal or

exceed those of the IN2150A.
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